Tidal Evolution of Close-in Extrasolar Planets

نویسندگان

  • Brian Jackson
  • Richard Greenberg
  • Rory Barnes
چکیده

The distribution of eccentricities e of extrasolar planets with semimajor axes a > 0:2 AU is very uniform, and values for e are relatively large, averaging 0.3 and broadly distributed up to near 1. For a < 0:2 AU, eccentricities are much smaller (most e < 0:2), a characteristic widely attributed to damping by tides after the planets formed and the protoplanetary gas disk dissipated.Most previous estimates of the tidal damping considered the tides raised on the planets, but ignored the tides raised on the stars. Most also assumed specific values for the planets’ poorly constrained tidal dissipation parameter Qp. Perhaps most important, in many studies the strongly coupled evolution between e and a was ignored. We have now integrated the coupled tidal evolution equations for e and a over the estimated age of each planet, and confirmed that the distribution of initial e values of close-in planets matches that of the general population for reasonable Q values, with the best fits for stellar and planetary Q being 10 and 10, respectively. The accompanying evolution of a values showsmost close-in planets had significantly larger a at the start of tidal migration. The earlier gas disk migration did not bring all planets to their current orbits. The current small values of awere only reached gradually due to tides over the lifetimes of the planets. These results may have important implications for planet formation models, atmospheric models of ‘‘hot Jupiters,’’ and the success of transit surveys. Subject headinggs: celestial mechanics — planetary systems: formation — planetary systems: protoplanetary disks

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tidal Heating of Extrasolar Planets

Extrasolar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget go...

متن کامل

On the Origins of Eccentric Close-in Planets

Strong tidal interaction with the central star can circularize the orbits of close-in planets. With the standard tidal quality factor Q of our solar system, estimated circularization times for close-in extrasolar planets are typically shorter than the ages of the host stars. While most extrasolar planets with orbital radii a . 0.1AU indeed have circular orbits, some close-in planets with substa...

متن کامل

Tidal Constraints on the Masses of Extrasolar Planets

Tidal theory predicts that the orbits of close extrasolar giant planets will circularize on timescales that can be comparable to the ages of those systems. Additionally, planets that are close enough and massive enough can spin up their central stars. Since the eccentricities of extrasolar planet orbits are determined by the radial velocity technique and since stellar rotation rates are observe...

متن کامل

Tidal heating of terrestrial extrasolar planets and implications for their habitability

The tidal heating of hypothetical rocky (or terrestrial) extrasolar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth’s, which may enhance the planet’s habitability. In other cases, excessive tidal heating may r...

متن کامل

Tidal dissipation in rotating giant planets

Many extrasolar planets orbit sufficiently close to their host stars that significant tidal interactions can be expected, resulting in an evolution of the spin and orbital properties of the planets. The accompanying dissipation of energy can also be an important source of heat, leading to the inflation of short-period planets and even mass loss through Roche-lobe overflow. Tides may therefore p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008